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Abstract
A noncommutative version of the modified KP equation and a family of its
solutions expressed as quasideterminants are discussed. The origin of these
solutions is explained by means of Darboux transformations and the solutions
are verified directly. We also verify directly an explicit connection between
quasideterminant solutions of the noncommutative mKP equation and the
noncommutative KP equation arising from the Miura transformation.

PACS numbers: 02.30.Ik, 02.40.Gh

1. Introduction

Recently, there has been much interest in several noncommutative integrable systems [1, 2, 13,
16–18]. In the paper by Etingof et al [4], it was shown that solutions of the noncommutative
KP equation (ncKP) could be expressed as quasideterminants. Quasideterminant solutions
of noncommutative integrable systems can often be obtained from Darboux transformations
[7, 11]. These concepts are elaborated on in [10] where two families of solutions of the
ncKP equation were presented which were termed quasiwronskians and quasigrammians.
The origin of these solutions was explained by Darboux and binary Darboux transformations.
The quasideterminant solutions were then verified directly using formulae for derivatives of
quasideterminants (see also [3]). In this approach, the nature of the noncommutativity is not
specified so that the results presented were valid for, for example, the noncommutative Moyal
star product and the matrix or quaternion versions of the KP equation.

In the present paper, we follow this concept of noncommutativity to find quasideterminant
solutions of a noncommutative version of the modified KP equation (ncmKP). The ncmKP
hierarchy [12] can be constructed in the spirit of Gelfand–Dickii theory [6] and the ncmKP
equation extracted from it using a change of variables given in [18]. The origin of the
solutions of ncmKP is explained by means of Darboux transformations of the pseudo-
differential operator used to construct the hierarchy. Obtaining Darboux transformations
in this manner is reminiscent of the approach in [14], where the solutions are expressed as
ratios of wronskian determinants. We extend the concepts in [14] to the ncmKP hierarchy
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and find a class of quasiwronskian solutions obtained by iteration of the gauge-transformed
pseudo-differential operator for the ncmKP hierarchy, interpreting this process as a Darboux
transformation. It is then shown that these solutions can be verified directly using formulae for
derivatives of quasideterminants and some related identities. In [14] it is shown that a Miura
transformation between the (commutative) KP and mKP equations can be obtained from a
gauge transformation of the pseudo-differential operator used to construct the (commutative)
KP hierarchy by comparing this operator to the pseudo-differential operator used in the
construction of the (commutative) mKP hierarchy. In the book by Kupershmidt [12], a
noncommutative Miura transformation between the ncKP and ncmKP equations was given.
Here we present a noncommutative Miura transformation analogous to that given in [2]. We
also give the explicit connection between the quasideterminant solutions of ncKP and ncmKP
that is described by the Miura transformation.

The present work requires the use of some elementary properties of quasideterminants,
which we shall recall in section 3. For a complete treatment of quasideterminants, the reader
should refer to the original papers [7–9].

2. Noncommutative mKP hierarchy

In this section, we construct the ncmKP hierarchy in the spirit of Gelfand–Dickii theory [6, 4].
A pseudo-differential operator L is defined by

L = ∂x + w + w1∂
−1
x + w2∂

−2
x + w3∂

−3
x + · · · ,

where w and ws (s = 1, 2, . . .) do not necessarily commute and depend on x and tq

(q = 1, 2, . . .), and ∂i
x denotes the nth partial derivative operator ∂i

∂xi . As in standard,
commutative Sato theory, we define the ncmKP hierarchy as

Ltq = [P�1(L
q), L], q = 1, 2, . . . , (2.1)

where

P�1

(∑
i

wi∂
i
x

)
=

∑
i�1

wi∂
i
x

denotes projections of powers of the operator L onto the differential part. The first three such
projections are

P�1(L) = ∂x,

P�1(L
2) = ∂2

x + 2w∂x,

P�1(L
3) = ∂3

x + 3w∂2
x + 3(wx + w2 + w1)∂x.

Thus, via the evolution equation (2.1), we obtain the ncmKP hierarchy:

Lt1 = [P�1(L), L] ⇔

⎧⎪⎪⎨⎪⎪⎩
wt1 = wx,

w1t1 = w1x,

w2t1 = w2x,

· · · ,
(2.2)

Lt2 = [P�1(L
2), L] ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wy = wxx + 2w1x + 2wwx + 2[w,w1],
w1y = w1xx + 2w2x + 2w1wx + 2ww1x + 2[w,w2],
w2y = w2xx + 2w3x + 2ww2x + 4w2wx − 2w1wxx + 2[w,w3],
w3y = w3xx + 2w4x + 2ww3x + 6w3wx − 2w1wxxx − 6w2wxx

+ 2[w,w4],
· · · ,

(2.3)

2



J. Phys. A: Math. Theor. 41 (2008) 085202 C R Gilson et al

Lt3 = [P�1(L
3), L] ⇔

⎧⎨⎩
wt = wxxx + 3w1xx + 3w2x + 6ww1x + 3w1wx + 3wxw1

+ 3wwxx + 3w2
x + 3w2wx + 3[w2, w1] + 3[w,w2],

· · · ,
(2.4)

where we have set t2 = y and t3 = t . The term 2[w,w1] in the first component of (2.3)
prevents us from recursively expressing the fields ws (s = 1, 2, . . .) in terms of w and its x-
and tq-derivatives. However, using the second component of (2.3) and the first component of
(2.4), we obtain

2wt− 2wxxx− 3w1xx− 6ww1x− 3w1y− 6wxw1 − 6wwxx− 6w2
x− 6w2wx− 6[w2, w1] = 0.

(2.5)

To eliminate the field w1, we make the change of variables w1 = − 1
2 (wx + w2 − W). Thus,

from the first component of (2.3), and from (2.5), we obtain the following equations:

−4wt + wxxx − 6wwxw + 3Wy + 3[wx,W ]+ − 3[wxx,w] − 3[W,w2] = 0, (2.6)

Wx − wy + [w,W ] = 0. (2.7)

Equations (2.6), (2.7) form the ncmKP equation, in a form slightly different but equivalent to
that studied in [18]. This is found from a different perspective in [2]. Equation (2.7) can be
satisfied identically by introducing the change of variables w = −fxf

−1, and W = −fyf
−1

(see also [18]) where f = f (x, tq) is invertible but is not assumed that f and its derivatives
commute.

3. Quasideterminants

Quasideterminants were introduced by Gelfand et al in the early 1990s [8]. Here we give the
basic definitions and a summary of the results from this theory that we will use. An n × n

matrix A over a not necessarily commutative ring R has, in general, n2 quasideterminants. We
denote each quasideterminant by |A|ij , 1 � i, j � n. Let Aij , which we assume is invertible,
denote the matrix obtained from A by deleting the ith row and j th column. Let r

j

k be the row
vector obtained from the kth row of A by deleting the j th entry and let si

l be the column vector
obtained from the lth column of A by deleting the ith entry. Then |A|ij exists and

|A|ij = aij − r
j

i (Aij )−1si
j . (3.1)

We shall henceforth adopt an alternative notation for quasideterminants by boxing the
leading element aij . More generally, for a block matrix, we can define∣∣∣∣∣A B

C d

∣∣∣∣∣ = d − CA−1B,

where d ∈ R, A is a square matrix over R of arbitrary size and B,C are column and row
vectors over R of compatible lengths respectively.

3.1. Homological relations

It is shown in [7] that quasideterminant row and column homological relations can be written
as ∣∣∣∣∣∣∣

A B C

D f g

E h i

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
A B C

D f g

0 0 1

∣∣∣∣∣∣∣ (3.2)
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and ∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣ =
∣∣∣∣∣∣
A B 0

D f 0
E h 1

∣∣∣∣∣∣
∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣ . (3.3)

4. Darboux transformations

The process of transforming the pseudo-differential operator L can be easily extended to the
noncommutative case. This requires the following definition and theorem [14].

Definition 4.1. The function θ = θ(x, tq) is an eigenfunction for the hierarchy (2.1) if it
satisfies the linear equations

θtq = P�1(L
q)[θ ], (4.1)

which are compatible and can be considered simultaneously for each q.

It is not assumed that θ and its x- and tq-derivatives commute.

Theorem 4.1. Let L satisfy (2.1) and let ψ = ψ(x, tq) be a generic eigenfunction for this
hierarchy. Then L̃ = GθLG−1

θ with

(a) Gθ [ψ] = θ−1ψ , or
(b) Gθ [ψ] = (θx)

−1ψx , or a composition of the previous two transformations,
(c) Gθ [ψ] = ψ − θ(θx)

−1ψx ,

satisfies the hierarchy L̃tq = [P�1(L̃
q), L̃] and ψ̃tq = P�1(L

q)[ψ̃] where ψ̃ = Gθ [ψ].

It emerges that none of the three choices of Gθ transform the field w in such a way that
we can iterate the transformation and obtain quasideterminant solutions. We can, however,
obtain a quasideterminant structure for the function f , and the eigenfunction ψ , through the
Darboux transformation Gθ = ((θ−1)x)

−1∂xθ
−1 = 1 − θ(θx)

−1∂x given in theorem 4.1(c).
We note that the quasideterminant structure is immediately evident from

Gθ [ψ] = ψ − θ(θx)
−1ψx =

∣∣∣∣∣ θ ψ

θx ψx

∣∣∣∣∣ .
Let θi, i = 1, . . . , n, be a particular set of eigenfunctions and introduce the notation
� = (θ1, θ2, . . . , θn). To iterate the Darboux transformation, let θ[1] = θ1 and ψ[1] = ψ

be a general eigenfunction of L[1] = L. Then ψ[2] := Gθ[1] [ψ[1]] and θ[2] = ψ[2]|ψ→θ2 are
eigenfunctions for L[2] = Gθ[1]L[1]G

−1
θ[1]

. In general, for n � 1 we define the nth Darboux
transformation of ψ by

ψ[n+1] = ψ[n] − θ[n](θ[n]x)
−1ψ[n]x,

in which

θ[k] = ψ[k]|ψ→θk
.

For example,

ψ[2] = ψ − θ1(θ1x)
−1ψx =

∣∣∣∣∣ θ1 ψ

θ
(1)
1 ψ(1)

∣∣∣∣∣ ,
ψ[3] = ψ − θ1(θ1x)

−1ψx − (θ2 − θ1(θ1x)
−1θ2x)(θ2 − θ1(θ1x)

−1θ2x)
−1
x (ψ − θ1(θ1x)

−1ψx)x

=

∣∣∣∣∣∣∣
θ1 θ2 ψ

θ
(1)
1 θ

(1)
2 ψ(1)

θ
(2)
1 θ

(2)
2 ψ(2)

∣∣∣∣∣∣∣ ,
4
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where (k) denotes the kth x-derivative. After n iterations, we have

ψ[n+1] =

∣∣∣∣∣∣∣∣∣∣
� ψ

...
...

�(n−1) ψ(n−1)

�(n) ψ(n)

∣∣∣∣∣∣∣∣∣∣
.

Next, we determine the Darboux-transformed fields w̃, w̃s (s = 1, 2, . . .) by calculating

L̃ = ((θ−1)x)
−1∂xθ

−1Lθ∂−1
x (θ−1)x

= ∂x − (−θ(θx)
−1f )x(−θ(θx)

−1f )−1 +
(

1
2 (−θ(θx)

−1f )xx(−θ(θx)
−1f )−1

− (−θ(θx)
−1f )x(−θ(θx)

−1f )−1(−θ(θx)
−1f )x(−θ(θx)

−1f )−1

− 1
2 ((−θ(θx)

−1f )−1)y(−θ(θx)
−1f )−1)∂−1

x + · · · ,
which leaves the ncmKP hierarchy invariant, preserving the structure of w,ws (s = 1, 2, . . .).
The coefficients

w̃ = −(−θ(θx)
−1f )x(−θ(θx)

−1f )−1,

w̃1 = 1
2 (−θ(θx)

−1f )xx(−θ(θx)
−1f )−1 − (−θ(θx)

−1f )x(−θ(θx)
−1f )−1(−θ(θx)

−1f )x

× (−θ(θx)
−1f )−1 − 1

2 ((−θ(θx)
−1f )−1)y(−θ(θx)

−1f )−1,

· · ·
will satisfy (2.3) and (2.4). In particular, w̃ will satisfy the ncmKP equation. Using the fact
that w̃ is of the form −f̃ x f̃

−1, we obtain

f̃ = −θ(θx)
−1f =

∣∣∣∣∣ θ 0
θx 1

∣∣∣∣∣ f.

If we let f = f[1], then for the nth Darboux transformation of f we have

f[n+1] =

∣∣∣∣∣∣∣∣∣∣
� 0
...

...

�(n−1) 0
�(n) 1

∣∣∣∣∣∣∣∣∣∣
f.

We note that an analogous transformation can be made by letting g = f −1, so that

w = −(g−1)xg = g−1gx

satisfies the ncmKP equation. For the function g, we get

w̃ = (gθxθ
−1)−1(gθxθ

−1)x,

so that

g̃ = gθxθ
−1 = −g

∣∣∣∣∣ θ 1

θx 0

∣∣∣∣∣ .
If we let g = g[1], then for the nth Darboux transformation of g we have

g[n+1] = −g

∣∣∣∣∣∣∣∣∣∣∣∣

� 1
�(1) 0

...
...

�(n−1) 0

�(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.
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5. Derivatives of quasiwronskians

Derivatives of quasideterminants have been considered in[3, 10]. Let �̂ = (
(i−1)

θj

)
i,j=1,...,n

be

the n × n wronskian matrix of θ1, . . . , θn, where (k) denotes the kth derivative and let ek be
the n-vector (δik) (i.e. a column vector with 1 in the kth row and 0 elsewhere). We consider
derivatives of the form

Q(i, j) =
∣∣∣∣∣ �̂ en−j

�(n+i) 0

∣∣∣∣∣ . (5.1)

Assuming n is arbitrarily large, we may summarize the properties of Q(i, j) as (see [10])

Q(i, j) =
{−1 i + j + 1 = 0

0 (i < 0 or j < 0) and i + j + 1 �= 0.
(5.2)

We call this type of quasideterminant a quasiwronskian. If we relabel and rescale the variables
so that x1 = x, x2 = y, x3 = −4t , � satisfies the linear equations

�x2 = �xx, �x3 = �xxx. (5.3)

We may allow � to depend on higher variables xk and impose the natural dependence
�xk

= �x · · · x︸ ︷︷ ︸
k

.

Using conditions (5.2), we obtain (see [10])

∂

∂xm

Q(i, j) = Q(i + m, j) − Q(i, j + m) +
(m−1)∑
k=0

Q(i, k)Q(m − k − 1, j). (5.4)

This formula is known in the commutative case [5, 15], but arises in connection with the
construction of the KP hierarchy rather than its solutions.

In addition to Q(i, j) we can define a shifted version, which we will call Q′(i, j):

Q′(i, j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�(1) 0
...

...

�(n−j) 1
...

...

�(n) 0

�(n+i+1) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This satisfies an equation similar to (5.4).

6. Direct verification

In this section, we derive identities which link the quasideterminant solutions of ncKP and
ncmKP. Note that the Lax pairs of ncKP and ncmKP are the same when the vacuum solutions
are trivial. Let � be a common eigenfunction for these two (trivial vacuum) Lax pairs. We
find that the solutions of ncmKP are

w = −FxF
−1, W = −FyF

−1,

or equivalently

w = G−1Gx, W = G−1Gy,

6
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where

F =

∣∣∣∣∣∣∣∣∣∣∣∣

� 0
�(1) 0

...
...

�(n−1) 0
�(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣
, G = F−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

� 1
�(1) 0

...
...

�(n−1) 0

�(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (6.1)

The inverse of F is obtained from the expression for F by swapping the boxed entry and 1 in
the last column of F.

In our discussion, we also use the solutions v = −2Q and v̂ = −2Q′ of the ncKP
equation [10]:

(vt + vxxx + 3vxvx)x + 3vyy − 3[vx, vy] = 0. (6.2)

Here, for convenience this is written in a potential form (the usual KP variable is u = vx):

Q = Q(0, 0) =

∣∣∣∣∣∣∣∣∣∣∣∣

� 0
�(1) 0

...
...

�(n−1) 1

�(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣
, Q′ = Q′(0, 0) =

∣∣∣∣∣∣∣∣∣∣∣∣

�(1) 0
�(2) 0

...
...

�(n) 1

�(n+1) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that Q′ is only a solution if the vacuum is trivial.
In a similar way, we define

F(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 0
�(1) 0

...
...

�(n−j) 1
...

...

�(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, G(j) =

∣∣∣∣∣∣∣∣∣∣∣∣

� 1
�(1) 0

...
...

�(n−1) 0

�(n+j) 0

∣∣∣∣∣∣∣∣∣∣∣∣
, (6.3)

and note that F = F(0) and G = G(0). Using (3.3), we have homological relations expressed
as the identities

FQ(0, j) = F(j + 1) (6.4)

and

Q′(j, 0)G = −G(j + 1). (6.5)

Now consider the derivatives of F(j): using (6.3) and (6.4),

F(j)x = FQ′(0, j) − F(j + 1) = F(Q′(0, j) − Q(0, j)). (6.6)

More generally, if we assume that � satisfies the linear PDEs �xk
= �x · · · x︸ ︷︷ ︸

k

, we have

F(j)xk+1 =
k∑

i=0

F(i)Q′(k − i, j) − F(k + j + 1) (6.7)

= F

(
Q′(k, j) +

k∑
i=1

Q(0, i − 1)Q′(k − i, j) − Q(0, k + j)

)
. (6.8)

7
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Thus,

Fx = FQ′ − F(1) = F(Q′ − Q),

Fxx = F((Q′ − Q)2 + Q′
x − Qx)

and

Fy = FQ′(1, 0) + F(1)Q′ − F(2),

and so

Fxx + Fy = 2FQ′
x. (6.9)

Using a Jacobi identity and (6.5), we can show that

Q′(0, 1) =

∣∣∣∣∣∣∣∣∣∣∣∣

�(1) 0
...

...

�(n−1) 1
�(n) 0

�(n+1) 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 1 0
�(1) 0 0

...
...

...

�(n−1) 0 1
�(n) 0 0

�(n+1) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Q(1, 0) − G(1)F−1Q = Q(1, 0) + Q′Q.

This is the noncommutative version of the first bilinear identity in the ncmKP hierarchy. This
can also be obtained from expanding Fxx in two different ways. This noncommutative identity
can be generalized to get to the other members of the hierarchy;

Q′(i, j) = Q(i + 1, j − 1) + Q′(i, 0)Q(0, j − 1). (6.10)

This follows immediately from considering Q′(i, j) written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 1 0
�(1) 0 0

...
...

...

�(n−j) 0 1
...

...
...

�(n−1) 0 0
�(n) 0 0

�(n+1+i) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 0
�(1) 0

...
...

�(n−j) 1
...

...

�(n−1) 0

�(n+1+i) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 1
�(1) 0

...
...

�(n−j) 0
...

...

�(n−1) 0

�(n+1+i) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 1
�(1) 0

...
...

�(n−j) 0
...

...

�(n−1) 0

�(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 0
�(1) 0

...
...

�(n−j) 1
...

...

�(n−1) 0

�(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Q(i + 1, j − 1) − G(i + 1)F−1Q(0, j − 1)

and then using (6.5).
In the commutative case, (6.10) becomes (in the Frobenius notation)

τ̂(i|j)τ − τ̂(i|0)τ(0|j−1) + τ̂ τ(i+1|j−1) = 0.

We substitute w,W and their derivatives into equations (2.6) and (2.7). Equation (2.7)
is satisfied straightforwardly and equation (2.6) is satisfied only after the application of the
identities (6.4), (6.5), (6.10).

A Miura transformation [2], taking us from a solution of the ncmKP to that of the ncKP,
can be obtained from the Gelfand–Dikii approach. The transformation takes the form

−wx − w2 + W = FuF−1, u = vx, (6.11)

8



J. Phys. A: Math. Theor. 41 (2008) 085202 C R Gilson et al

where v is a solution of the ncKP equation in a potential form (6.2) and w,W,F are the fields
from the ncmKP. Note here that in the commuting case, the fields F and F−1 cancel to give

−wx − w2 + W = u, u = vx, Wx = wy.

This is the usual Miura transformation. For the noncommuting case, there is a second Miura
transformation:

wx − w2 + W = F ûF−1, û = v̂x, (6.12)

which relates the ncmKP with a different solution v̂ of the ncKP. Both (6.11) and (6.12) can
be directly verified by using the quasiwronskian form of the functions as given earlier in the
paper.

7. Conclusions

In this paper, we have investigated a Gelfand–Dikki approach to a noncommutative modified
KP hierarchy. The equations obtained are similar to those obtained in the commuting version
but have additional terms that are commutators. A construction of the noncommutative mKP
equation was given and it was seen to match up with that of Wang and Wadati [18]. We have
shown that quasiwronskian solutions can be built up by means of Darboux transformations.
Additionally, we have used direct methods to show that these solutions satisfy the ncmKP
equations using quasideterminantal identities. As with the work on the ncKP equation [10],
we have not at any point specified what kind of noncommutative objects we are looking at.
This means that our results will hold for any noncommutative situation. For instance, we
could be looking at a matrix version of mKP or a quaternionic version.
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